* Equal contribution

$>$ Each robot has a different morphology.
Each robot has a different morphology. $>$ Prior Attempts only use topology graph in 2D Planar environments. $>$ Prior Attempts only use topology graph in 2D Planar environments.
$>$ Real Physical World is 3D Geometric Structure and Systems, which - Real Physical World is 3D Getry.
contains Physical Symmetry.

Motivation: 3D-SGRL

Illustrative comparison between previous 2D planar setting and our 3D subequivariant formulation.

Method: SubEquivariant Transformer (SET)

Equivariance
Definition 2.1 (E(3)-equivariance). Suppose $\overrightarrow{\boldsymbol{Z}}$ to be 3D geometric vectors (positions, velocities, etc) that are steerable by $\mathrm{E}(3)$ transformations, and \boldsymbol{h} non-steerable features.

- The function f is $\mathrm{E}(3)$-equivariant, if for any transformation
$g \in \mathrm{E}(3), f(g \cdot \overrightarrow{\boldsymbol{Z}}, \boldsymbol{h})=g \cdot f(\overrightarrow{\boldsymbol{Z}}, \boldsymbol{h}), \forall \overrightarrow{\boldsymbol{Z}} \in \mathbb{R}^{3 \times m}, \boldsymbol{h} \in \mathbb{R}^{d}$.
- Similarly, f is invariant if $f(g \cdot \overrightarrow{\boldsymbol{Z}}, \boldsymbol{h})=f(\overrightarrow{\boldsymbol{Z}}, \boldsymbol{h})$.
\square SubEquivariance
Han et al. (2022a) additionally considers equivariance on the subgroup of $\mathrm{O}(3)$, induced by the external force $\overrightarrow{\boldsymbol{g}} \in \mathbb{R}^{3}$ like gravity, defined as

$$
\mathrm{O}_{\overrightarrow{\boldsymbol{g}}}(3):=\left\{\boldsymbol{O} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{O}^{\top} \boldsymbol{O}=\boldsymbol{I}, \boldsymbol{O} \overrightarrow{\boldsymbol{g}}=\overrightarrow{\boldsymbol{g}}\right\}
$$

Han et al. (2022a) also presented a universally expressive construction of the $\mathrm{O}_{\vec{g}}$ (3)equivariant functions:

$$
\begin{aligned}
& f_{\vec{g}}(\overrightarrow{\boldsymbol{Z}}, \boldsymbol{h})=[\overrightarrow{\boldsymbol{Z}}, \overrightarrow{\boldsymbol{g}}] \boldsymbol{M}_{\overrightarrow{\boldsymbol{g}}} \\
& \text { s.t. } \quad \boldsymbol{M}_{\overrightarrow{\boldsymbol{g}}}=\sigma\left([\overrightarrow{\boldsymbol{Z}}, \overrightarrow{\boldsymbol{g}}]^{\top}[\overrightarrow{\boldsymbol{Z}}, \overrightarrow{\boldsymbol{g}}], \boldsymbol{h}\right),
\end{aligned}
$$

where $\sigma(\cdot)$ is an Multi-Layer Perceptron (MLP) and $[\overrightarrow{\boldsymbol{Z}}, \overrightarrow{\boldsymbol{g}}] \in \mathbb{R}^{3 \times(m+1)}$ is a stack of $\overrightarrow{\boldsymbol{Z}}$ and $\overrightarrow{\boldsymbol{g}}$ along the last dimension.

- Illustration of the Flowchart of 3D-SGRL.

Ablation

C ingle-Task

Comparison with Invariant Methods
\qquad

Z Zero-Shot Generalization

