

Subequivariant Graph Reinforcement Learning in 3D Environments

Runfa Chen*, Jiaqi Han*, Fuchun Sun, Wenbing Huang

* Equal contribution

Background

□ Challenges posed by morphology

- Each robot has a different morphology.
- A separate policy is trained for each robotics setup. It doesn't generalize.
- ▶ Prior Attempts only use topology graph in 2D Planar environments.
- ≻Real Physical World is 3D Geometric Structure and Systems, which contains Physical Symmetry.

Motivation: 3D-SGRL

Illustrative comparison between previous 2D planar setting and our 3D subequivariant formulation.

(a) 2D Planar Locomotion Environments

(b) 3D Subequivariant Locomotion Environments

		2D-Planar	Our 3D-SGRL
State Space	Range	xoz-plane	3D space
	Initial	x^+ -axis	Arbitrary direction
	Target	x^+ -axis	Arbitrary direction
Action Space	# Actuators	1 per joint	3 per joint
	DoF	1 per joint	3 per joint
Symmetry	External Force	NULL	Gravity \vec{g} , Target \vec{d}
	Group	Ø	O $_{\vec{g}}(3)$

□ Illustration of the Flowchart of 3D-SGRL.

Our Contributions

➤We introduce a new morphology-agnostic RL benchmark that extends the widely adopted 2D-Planar setting to 3D-SGRL, permitting significantly larger exploring space of the agents with arbitrary initial location and target direction.

> To learn a policy in this massive search space, we design SET, a novel model that preserves geometric symmetry by construction.

Method: SubEquivariant Transformer (SET)

Equivariance

Definition 2.1 (E(3)-equivariance). Suppose \vec{Z} to be 3D geometric vectors (positions, velocities, etc) that are steerable by E(3) transformations, and h non-steerable features.

• The function f is E(3)-equivariant, if for any transformation

$$g\in \mathrm{E}(3), f(g\cdotec{oldsymbol{Z}},oldsymbol{h})=g\cdot f(ec{oldsymbol{Z}},oldsymbol{h}), orallec{oldsymbol{Z}}\in \mathbb{R}^{3 imes m},oldsymbol{h}\in \mathbb{R}^d.$$

• Similarly, f is invariant if $f(q \cdot \vec{Z}, h) = f(\vec{Z}, h)$.

□ SubEquivariance

Han et al. (2022a) additionally considers equivariance on the subgroup of O(3), induced by the external force $\vec{q} \in \mathbb{R}^3$ like gravity, defined as

$$\mathbb{O}_{ec{m{g}}}(3):=ig\{m{O}\in\mathbb{R}^{3 imes3}\midm{O}^{ op}m{O}=m{I},m{O}ec{m{g}}=ec{m{g}}ig\}ig\}$$

Han et al. (2022a) also presented a universally expressive construction of the $O_{\vec{a}}$ (3)equivariant functions:

$$egin{aligned} &f_{ec{g}}(ec{m{Z}},m{h}) = [ec{m{Z}},ec{m{g}}]m{M}_{ec{m{g}}}, \ & ext{s.t.} \quad m{M}_{ec{m{g}}} = \sigma\Big([ec{m{Z}},ec{m{g}}]^ op [ec{m{Z}},ec{m{g}}],m{h}\Big) \end{aligned}$$

where $\sigma(\cdot)$ is an Multi-Layer Perceptron (MLP) and $[\vec{Z}, \vec{g}] \in \mathbb{R}^{3 \times (m+1)}$ is a stack of \vec{Z} and \vec{q} along the last dimension.

Comparison with Invariant Methods

Environment	Set	SWAT+HN			
cross-domain (3D_CWHH++)					
3d_walker_3 3d_walker_6	$\begin{array}{c} \textbf{206.8} \pm 37.4 \\ \textbf{243.7} \pm 32.3 \end{array}$	26.3 ± 72.4 156.8 ± 11.1			
3d_humanoid_7 3d_humanoid_8	$\begin{array}{c} {\bf 161.9 \pm 3.4} \\ {\bf 180.0 \pm 6.5} \end{array}$	130.2 ± 2.1 152.9 ± 36.8			
3d_cheetah_11 3d_cheetah_12	$\begin{array}{c} \textbf{1078.1} \pm 722.8 \\ \textbf{3038.3} \pm 2803.3 \end{array}$	$786.5 \pm 779.3 \\ 2517.3 \pm 2113.9$			

Ablation

Zero-Shot Generalization

Environment	Set	SWAT	SMP		
in-domain (3D_Walker++, 3D_Humanoid++, 3D_Cheetah++)					
3d_walker_3 3d_walker_6	$\begin{array}{c} {\bf 276.2 \pm 17.4} \\ {\bf 431.3 \pm 146.2} \end{array}$	$\begin{array}{c} 207.0 \pm 52.7 \\ 358.0 \pm 58.9 \end{array}$	56.8 ± 15.1 143.4 ± 50.7		
3d_humanoid_7 3d_humanoid_8	$244.8 \pm 7.9 \\ 299.6 \pm 23.7$	$\begin{array}{c} 170.3 \pm 51.7 \\ 141.4 \pm 22.1 \end{array}$	$\begin{array}{c} 190.9 \pm 16.2 \\ 185.4 \pm 9.2 \end{array}$		
3d_cheetah_11 3d_cheetah_12	$\begin{array}{c} \textbf{4643.9} \pm 292.6 \\ \textbf{916.0} \pm 39.7 \end{array}$	$\begin{array}{c} 1785.3 \pm 999.3 \\ 744.1 \pm 317.1 \end{array}$	2.0 ± 2.9 29.8 ± 10.7		
cross-domain (3D_CWHH++)					
3d_walker_3 3d_walker_6	$\begin{array}{c} \textbf{206.8} \pm 37.4 \\ \textbf{243.7} \pm 32.3 \end{array}$	17.9 ± 13.7 114.9 ± 40.3	$\begin{array}{c} 18.0 \pm 22.9 \\ 103.9 \pm 1.8 \end{array}$		
3d_humanoid_7 3d_humanoid_8	$\begin{array}{c} {\bf 161.9} \pm 3.4 \\ {\bf 180.0} \pm 6.5 \end{array}$	152.0 ± 6.8 156.6 ± 1.7	$\begin{array}{c} 124.2 \pm 15.7 \\ 129.3 \pm 0.1 \end{array}$		
3d_cheetah_11 3d_cheetah_12	$\begin{array}{c} \textbf{1078.1} \pm 722.8 \\ \textbf{3038.3} \pm 2803.3 \end{array}$	$\begin{array}{c} 4.3 \pm 1.6 \\ 349.7 \pm 304.3 \end{array}$	$6.2 \pm 0.5 \\ 6.6 \pm 1.2$		

Wechat

□ https://alpc91.github.io/SGRL/ https://github.com/alpc91/SGRL

Website